Edexcel Maths M3

Topic Questions from Papers

Kinematics

1.	A particle P moves along the x -axis. At time $t = 0$, P passes through the origin O , moin the positive x -direction. At time t seconds, the velocity of P is v m s ⁻¹ and O metres. The acceleration of P is $\frac{1}{12}(30-x)$ m s ⁻² , measured in the positive x -direction	P = x	dian
	(a) Give a reason why the maximum speed of P occurs when $x = 30$.		
	(a) Give a reason why the maximum speed of r occurs when we so.	(1)	
	Given that the maximum speed of P is 10 m s^{-1} ,		
	(b) find an expression for v^2 in terms of x.		
		(5)	
_			
_			
_			
_			
_			
_			
_			

Leave
blank

2.	A particle P of mass 0.1 kg moves in a straight line on a smooth horizontal table. When P is				
	a distance x metres from a fixed point O on the line, it experiences a force of magnitude $\frac{16}{5x^2}$ N				
	away from O in the direction OP . Initially P is at a point 2 m from O and is moving towards O with speed 8 m s ⁻¹ .				
	Find the distance of P from O when P first comes to rest.				
	(8)				

6. A particle P of mass 0.5 kg moves along the positive x-axis. It moves away from the origin O under the action of a single force directed away from O. When OP = x metres,

the magnitude of the force is $\frac{3}{(x+1)^3}$ N and the speed of P is v m s⁻¹.

Initially *P* is at rest at *O*.

- (a) Show that $v^2 = 6\left(1 \frac{1}{(x+1)^2}\right)$. (6)
- (b) Show that the speed of P never reaches $\sqrt{6}$ m s⁻¹.

(1)

(c) Find x when P has been moving for 2 seconds.

(7)

Question 6 continued	

1.	A particle P of mass 3 kg is moving in a straight line. At time t seconds, $0 \le t \le 4$, the
	only force acting on P is a resistance to motion of magnitude $\left(9 + \frac{15}{(t+1)^2}\right)$ N. At
	time t seconds the velocity of P is $v \text{ m s}^{-1}$. When $t = 4$, $v = 0$.
	Find the value of v when $t = 0$.
	(7)

- 6. A cyclist and her bicycle have a combined mass of $100 \,\mathrm{kg}$. She is working at a constant rate of $80 \,\mathrm{W}$ and is moving in a straight line on a horizontal road. The resistance to motion is proportional to the square of her speed. Her initial speed is $4 \,\mathrm{m \ s^{-1}}$ and her maximum possible speed under these conditions is $20 \,\mathrm{m \ s^{-1}}$. When she is at a distance $x \,\mathrm{m}$ from a fixed point O on the road, she is moving with speed $v \,\mathrm{m \ s^{-1}}$ away from O.
 - (a) Show that

$$v \frac{dv}{dx} = \frac{8000 - v^3}{10000v} \ .$$

(5)

(b) Find the distance she travels as her speed increases from $4 \, \text{m s}^{-1}$ to $8 \, \text{m s}^{-1}$.

(5)

(c)	Use the trapezium rule,	with 2 intervals,	to estimate	how lo	ng it takes	for her	speed
	to increase from 4 m s ⁻¹	to $8 \mathrm{m \ s^{-1}}$.					

(4)

Question 6 continued	blan

Leave

•	A particle P of mass 0.5 kg is moving along the positive x -axis. At time t seconds, P is moving under the action of a single force of magnitude $[4 + \cos(\pi t)]$ N, directed away from the origin. When $t=1$, the particle P is moving away from the origin with speed 6 m s^{-1} .			
	Find the speed of P when $t=1.5$, giving your answer to 3 significant figures. (7			
		_		
		_		
		-		
		-		
		_		
		_		
		_		
		-		
		-		
		-		
		_		
		_		
		_		
		-		
		-		
		_		
		_		
		_		
		-		
		_		
		_		
		_		
		_		
		-		
		-		
		_		
		_		

At time t = 0, a particle P is at the origin O moving with speed 2 m s^{-1} along the x-axis in the positive x-direction. At time t seconds (t > 0), the acceleration of P has magnitude

 $\frac{3}{(t+1)^2}$ m s⁻² and is directed towards O.

(a) Show that at time t seconds the velocity of P is $\left(\frac{3}{t+1}-1\right)$ m s⁻¹. **(5)**

(b) Find, to 3 significant figures, the distance of P from O when P is instantaneously at rest.

(7)

	Leave
Question 6 continued	blank
Question 6 continued	
	1

When $t = 0$, P is at O and the distance of P from O	when P first comes to ins	tantaneous rest.	(6)

Leave blank 3. A particle P is moving in a straight line. At time t seconds, P is at a distance x metres from a fixed point O on the line and is moving away from O with speed $\frac{10}{x+6}$ m s⁻¹. (a) Find the acceleration of P when x = 14**(4)** Given that x = 2 when t = 1, (b) find the value of t when x = 14**(6)**

Question 3 continued	bl

Leave blank **1.** A particle *P* is moving along the positive *x*-axis. At time t = 0, *P* is at the origin *O*. At time *t* seconds, *P* is *x* metres from *O* and has velocity $v = 2e^{-x}$ m s⁻¹ in the direction of x increasing. (a) Find the acceleration of P in terms of x. **(3)** (b) Find x in terms of t. **(6)**

WI O	
When $x = 2$, $v = 6$	
Show that $v^2 = 9x^2$.	
	(4)

3. A particle P of mass 0.6 kg is moving along the x-axis in the positive direction. At time t = 0, P passes through the origin O with speed 15 m s⁻¹. At time t seconds the distance OP is t metres, the speed of t is t m s⁻¹ and the resultant force acting on t has magnitude t newtons. The resultant force is directed towards t or t newtons. The resultant force is directed towards t or t newtons.

(a) Show that $v = 5\left(\frac{4}{t+2} + 1\right)$. (5)

(b) Find the value of x when t = 5

(5)

uestion 3 continued	l t

2. A particle of mass 4 kg is moving along the horizontal <i>x</i> -axis under the action of a single force which acts in the positive <i>x</i> -direction. At time <i>t</i> seconds the force has magnitude
force which acts in the positive x-direction. At time t seconds the force has magnitude
$\left \frac{1}{1+2\sqrt{2}} \right _{N_1}$
$\left(1+3t^{\frac{1}{2}}\right)$ N.
When $t = 0$ the particle has speed 2 m s ⁻¹ in the positive x-direction. Find the work done
by the force in the interval $0 \le t \le 4$
(7)

Leave	
hlomle	

4. A particle *P* is moving along the positive *x*-axis. At time *t* seconds, $t \ge 0$, *P* is *x* metres from the origin *O* and is moving away from *O* with velocity $v \text{ m s}^{-1}$, where $v = \frac{4}{(x+2)}$. When t = 0, *P* is at *O*. Find

(a) the distance of *P* from *O* when t = 2(5)

(b) the magnitude and direction of the acceleration of *P* when t = 2(5)

uestion 4 continued		

Leave
blank

2.	A particle <i>P</i> of mass 0.5 kg is moving along the positive <i>x</i> -axis in the positive <i>x</i> -direction.	orai
	The only force on P is a force of magnitude $\left(2t + \frac{1}{2}\right)$ N acting in the direction	
	of x increasing, where t seconds is the time after P leaves the origin O . When $t = 0$, P is at rest at O .	
	(a) Find an expression, in terms of t, for the velocity of P at time t seconds. (3)	
	The particle passes through the point A with speed 6 m s^{-1} .	
	(b) Find the distance <i>OA</i> . (6)	